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SUMMARY 

One of the major difficulties of modelling fluid flow processes in hard-rock geologies is the complex 
nature of the porosity systems. Hydraulic behaviour in these rock masses is characterized by both 
porous and fractured interflow zones. Traditionally, fractured-porous rocks have been modelled as an 
equivalent porous medium or as a system of fractures separated by impermeable blocks. A new method 
is proposed that unifies these two approaches for modelling fluid flow processes in fractured-porous 
media. The basic idea is to use a combination of isdparametric elements for the porous zones and line 
elements for the fractures. The coupling between the governing equations for each element type is 
achieved using the superposition principle. The effectiveness of the new approach is demonstrated by 
comparing numerical solutions with known solutions for problems of flow and solute transport in 
fractured-porous media. 

INTRODUCTION 

One of the problems currently confronting the commercial nuclear power industry in the 
United States and other countries is that technology for permanent disposal of nuclear waste 
has not as yet been demonstrated. In recent years, a broad consensus has developed that the 
most feasible solution is disposal of the nuclear waste in deep geologic formations. In the 
United States, researchers at various laboratories are investigating a number of geologic rock 
types to determine their suitability for deep underground repositories that would be used to 
isolate future inventories of nuclear waste. One of the primary research projects is studying 
the extensive basalt formations that underlie the Hanford Site in southeastern Washington.* 

Mathematical models play an important role in the process of evaluating the waste- 
isolation capability of a candidate geology, by providing a basis to quantify respository 
performance. Predictions of basic hydrologic parameters, such as groundwater pathlines and 
traveltimes, are required to determine the degree of waste isolation achieved by the geologic 
system.2 In a hard-rock geology such as basalt, the problem of modelling fluid flow processes 
is complicated by the fact that the rock mass is characterized by both fractured and porous 
rock strata. The contrasting hydraulic properties of these strata determine the rate and 
direction of groundwater movement. 

The conceptual approaches currently used in modelling fluid flow in fractured media 

* This invited paper is an extended, and refereed version of one presented at the Fourth International Symposium 
on Finite Elements in Flow Problems held in Tokyo, Japan, 26-29 July 1982. 
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generally fall into two 'distinct' categories: the continuum approach and the discontinuum or 
discrete-fracture approach. The first approach is based on the concept that a rock mass is 
modelled at a sufficiently large space scale3 so that the idealization of an equivalent porous 
medium435 is valid. The second approach is based on the concept that the rock mass is 
composed of impermeable blocks, separated by systems of fractures that are idealized as 
networks of planar  conduit^.^,^ These two modelling approaches, as used in the past, have 
not been applicable to systems where flow through both porous strata and discrete fractures 
occurs simultaneously. 

In this paper, we present a new approach to the problem of modelling fluid flow processes 
in fractured-porous media, which uses finite-element techniques. This new approach unifies 
both the continuum and discontinuum modelling approaches. Results from recent research 
efforts on the development of a two-dimensional finite-element model for fluid flow 
processes in fractured-porous media are presented and discussed. 

MODELLING APPROACH 
Physical basis 

The geologic environment in the vicinity of a nuclear waste repository is expected to be 
perturbed by various processes associated .with the properties and presence of the deep 
underground facility. With regard to the hydrologic regime, perhaps the most significant 
factor will be the radiogenic heat produced by the waste form.' Groundwater movement 
through the surrounding rock mass will respond to the thermal driving force (i.e. buoyancy) 
and to the changes in the fluid properties. The importance of these effects is related to the 
fact that the temperature perturbations around the repository may persist for as long as 
10,000 yr.* 

To realistically describe groundwater flow in a fractured-porous medium, one must first 
relate the major features of the rock mass to hydraulic behaviour. In the case of an extrusive 
igneous rock such as basalt, individual basalt flows generally exhibit three distinct intraflow 
structures: the top of the rock layer is effectively a porous feature, whereas the centre and 
the base of the rock layer are low-permeability zones consisting of systems of cooling 
fractures (i.e. fractures created when the lava was formed). The conceptual understanding of 
the basic features of the rock mass and the important driving forces leads to a modelling 
approach for non-isothermal groundwater flow that considers: (1) flow through porous zones, 
(2) flow through systems of fractures, (3) flow exchanges between primary pores and 
fractures, (4) heat transfer through the combined water-rock systems, and ( 5 )  coupling 
between fluid flow and heat transport. 

In general, the modelling of solute transport through a fractured-porous medium requires 
the consideration of: (1) advection, (2) dispersion/diffusion, (3) sorption, and (4) decay 
processes in both porous and fracture zones. In low-permeability rocks, however, solute 
transport is often characterized by advection and dispersion in the fractures and molecular 
diffusion through the so-called porous In a rock mass that exhibits large contrasts 
between the total and effective porosities, molecular diffusion into and out of dead-end pores 
can have a significant effect on the rate of solute transport. This secondary diffusion effect 
represents a physical retardation that has important implications to nuclear waste isolation in 
hard-rock geologies.'" 

Governing equations 

The mathematical models for simultaneous fluid flow and heat transport are based on the 
general principles of fluid continuity and energy conservation." The fluid flow equations are 
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specialized to a fractured-porous medium by introducing the applicable flow law. In a porous 
medium, Darcy’s flow law applies, whereas in individual fractures, the Poiseuille equation for 
laminar flow in planar conduits is applicable. These linear flow laws are very similar and 
differ only in the formulation of the hydraulic conductivity. The fundamental flow law can be 
concisely written in indicia1 notation as: 

where 
qi = fluid velocity components 

Kii = principal hydraulic conductivity components 
h =hydraulic head 

6 b  = density disparity 
Si3 = Kronecker delta. 

In the above equation, repeated indices imply summation. The density disparity is a function 
of fluid density and is computed from: 

In this expression 
p = fluid density 

po = initial fluid density, which may vary with depth 
p* = a constant fluid density value corresponding to a particular reference temperature. 
For the continuum portion of the rock mass, the groundwater flow equation for non- 

isothermal flow is: 
s -=Kii-(-+*,8i,)+Yat ah a ah aT 

“ a t  a& a& (3) 

where 
S, = specific storage 
y =thermal coupling coefficient 
T = temperature of the water-rock system 
t =time. 

For the discrete fractures, the mathematical model for flow in the fractures is a one- 
dimensional equation expressed as: 

sf-=Kf-(-+6;)+Y- ah a ah aT 
at aL aL at 

where 
Sf = specific storage in the fracture 
L = co-ordinate along the fracture 
Kf = hydraulic conductivity of the filled or unfilled fracture 
8; = component of the density disparity along L. 

The time-dependence of the hydraulic head in the fracture enters primarily through the 
thermal coupling and the interactions with the flow in the continuum portion of the rock 
mass. For unfilled fractures, the hydraulic conductivity3 is computed from: 

ge2 K*=- 
12v 

where 
g = acceleration of gravity 
e = fracture aperture 
v =kinematic viscosity of the fluid. 
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Under the assumption that the fluid and rock mass .are in thermal equilibrium,'* the 
thermal energy balance on the water-rock system yields a single governing equation for 
heat transport, written as: 

where 
S,  = heat capacity of the water-rock system 
cf = specific heat of the fluid 

D, = thermal conductivity of the water-rock system 
Q = heat-generation rate. 

It is generally found, in a rock with low porosity and permeability, that the advective 
component is very small, so that the dominant mode of heat transport in the water-rock 
system is by pure conduction. 

For a single component, the general form of the solute transport equation is expressed by: 

where 
C = concentration 

Rd = retardation factor 
4 =effective porosity 

Dm = mass dispersion (hydrodynamic) coefficient 
h = decay constant 
m = mass source term. 

In the porous zones, the governing equation applies as stated above, whereas in the discrete 
fractures it simplifies to a one-dimensional form and the porosity is unity for the unfilled 
fractures. 

FINITE-ELEMENT TECHNIQUES 

Methods of weighted residuals 

The governing equations for fluid flow in the porous continuum and discrete fractures, as 
presented earlier, were formulated for each distinct flow system. The coupling between the 
two systems is achieved by using the principle of superposition. In essence, the approach 
consists of summing the Galerkin functional equations for the porous continuum and the 
discrete fracture elements. Mathematically, the superposition is represented by: 

where 
cC and E~ = residual error vectors for the continuum elements 

and discrete fractures, respectively 
wi =set of weighting functions 
l? = continuum domain 

= discrete domain. 
The finite-element representation of the space domain consists of two-dimensional 
isoparametric elements, with line elements embedded along the sides of the two-dimensional 
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ROCK ELEMENT ELEMENT 

CONCEPTUAL DISCRETE 

Figure 1. Finite-element representation of continuum and discrete features 

elements (Figure 1). Since the two-dimensional and line elements share the same set of 
nodes, flow and mass continuity between the two systems are enforced. 

The residual error vectors in the functional equations are expanded, using a Newton- 
Raphson appr~ximation,'~ to formulate the finite-element equations in terms of the incre- 
mental changes in the dependent variables, AT,  Ah, and AC. By applying this approach to 
the coupled equations of heat transport and fluid flow, one obtains a system of equations for 
the ith finite element of the general form: 

The first term (in brackets) is the Jacobian matrix and the last term (in braces) is the load 

Substituting the appropriate expression for the residual error, the following components of 
vector. For brevity, the above equation shall be expanded for the discrete domain only. 

the Jacobian matrix are obtained: 
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The expansion of the load vector yields the following components: 

This approach was also applied to  the mass transport equation which yields finite-element 
equations in terms of the change of concentration, AC. The above expressions are easily 
extended to the case of the continuum elements. 

Approximation and solution techniques 

shape functions given by: 
The dependent variables in the governing equations are approximated using quadratic 

m 

W X ,  Y ,  t> = C ui(x, y ) Q i ( t )  (16) 
i=l 

where 
CD =continuous variable, T, h, or C 
oi =shape functions 
cPi = nodal values of the dependent variables 
m =number of node points on the finite element. 
Fluid properties such as density and viscosity have been measured in the laboratory and 

t a b ~ l a t e d ' ~  as functions of temperature; these data were fitted using splines to provide 
smooth interpolating functions. The integration of the finite-element equations is performed 
using Gaussian quadrature. The final system of algebraic equations for each time step is 
solved using a frontal solution technique. 

MODEL APPLICATIONS 

Numerical results from application to various test cases are presented here, and demonstrate 
the general capability of the new finite-element techniques. The test cases consist of the 
following simulation problems: (1) flow through networks of discrete fractures, (2) steady 
flow in a porous medium with a single fracture, and (3) solute transport through a single 
fracture with diffusion into a porous matrix. 

Flow in fracture networks 

The problem of calculating fluid flow through a system of fractures is analogous to that of 
modelling a fully developed flow in an interconnected pipe network. A number of computa- 
tional techniques from pipe flow analysis have, in fact, been used by various researchers to 
solve the steady-flow equations in fracture networks. Krizek et al.,*' for example, have 
analysed fluid flow in various fracture sets using a link node finite-difference approach. 
Selected cases from their work are used here for comparison with the finite-element 
solutions. 

Two particular cases analysed by these authors consist of fracture sets intersecting at 90 
and 120", respectively. Hydraulic heads are specified at the left and right boundaries and at 
one internal node point of the network. These boundary conditions impose a net hydraulic 
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FRACTURES . . . . . . . . . . . . 
0 BOUNDARY NODES 

FINITE-ELEMENT SOLUTION 
FINITE-DIFFERENCE SOLUTION 

- ---- 

la) HYDRAULIC HEAD CONTOURS FOR FRACTURE SET 1 

(b) HYDRAULIC HEAD CONTOURS FOR FRACTURE SET 2 

Figure 2. Comparison of finite-element and finite-difference solutions for flow in fracture systems 

gradient from left to right. The fracture apertures in each system are uniform and are 
assigned a value of 5 Fm. Applying the power law from the Poiseuille flow equation, the 
assigned aperture is converted to a hydraulic conductivity of 2 x 

For the two test cases, the isothermal flow equation was solved by using a network of line 
elements to represent the discrete fractures. A comparison of the finite-element results with 
those obtained by Krizek et al? is presented in Figure 2. Both solutions for the hydraulic 
head distribution generally show very good agreement. 

To demonstrate the validity of the line element approach, a third test case is considered. 
This test case, using experimental data, originally analysed by Wilson and Witherspoon,d 
consists of flow through an orthogonal network of conduits. The conduits are of equal length 
and diameter. The flow distribution through the network is established by inflow at nodes 
along the left boundary and outflow at one node point on the bottom of the network. 
Hydraulic head measurements were reported for the conduit intersections (nodes). Overlay- 
ing a network of 67 line elements, a steady-flow calculation was performed using specified 
head boundary conditions. A comparison of the measured and calculated head values is 
presented in Figure 3 .  The maximum relative difference in these values is about 2 per cent. 
These differences are probably of the same order of magnitude as the measurement error. 

m/s. 

Porous medium with single fracture 

For this test case, we consider the problem of isothermal steady flow in a porous medium 
with a single fracture embedded in the centre of the domain. The fracture orientation is 
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OUTFLOW POINT 
NOTE: CALCULATED RESULTS IN PARENTHESES 

Figure 3. Measured and calculated heads for flow in conduit network 

parallel to the general direction of flow, and the fracture aperture is selected so as to give a 
fracture permeability that is lo4 greater than that of the porous medium. In this way, the 
fracture becomes the path of least resistance and, thus, will divert flow into and through the 
fracture. The high fracture permeability also has the effect of reducing the hydraulic gradient 
along the fracture. 

~~~ ~ - FINITE-ELEMENT SOLUTION ---- ANALYTICAL SOLUTION STREAMLINES 

L - 
I 

L 

-L - - - =- - -- - - 

I -  200 rn ~-1- FRACTURE 100 rn -I - 

Figure 4. Comparison of analytical and finite-element solutions for flow in a porous medium with single fracture 
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At high-permeability contrasts, this fractured-porous medium problem very closely resem- 
bles a classic fluid flow problem from potential flow theory. In particular, the flow of an ideal 
fluid around a flat plate of finite length, where the free-stream velocity is perpendicular to 
the plate, exhibits a flow net that is analogous to the one obtained for the fractured-porous 
medium problem. The only difference between the two flow systems is that the role of 
potential, 4, and stream function, 4, is reversed (i.e. the $-4 flow net for the potential flow 
case corresponds to the 4-4 net for the fractured-porous medium). The closed-form 
analytical solutions16 available for the potential flow problem were used as a basis for 
comparison with the finite-element solution. 

In specifying the test case, a rectangular domain 1000 m long by 200 m high was assumed 
with a 100-m-long fracture at the base of the region. The boundary conditions were selected 
to give a horizontal head gradient of m/m; no flow conditions were set on the top and 
bottom boundaries. A finite-element network was overlayed on the domain, consisting of 
200 quadrilateral elements. Six line elements connected end to end were used to represent 
the fracture. Graphic comparisons of the analytical solution and the finite-element solution 
for the streamlines are shown for a subregion around the crack (Figure 4). Very close 
agreement between the two solutions is clearly indicated. 

Solute transport in a fractured-porous medium 

Applicability of the new finite-element technique to solute transport problems is demon- 
strated here with a simple test case. We consider a rectangular porous domain with a 
through-running horizontal fracture at the bottom boundary. The boundary conditions are 
specified so that flow and transport occur along the discrete unfilled fracture and only 
molecular diffusion (transverse to the flow direction) occurs in the porous rock. The 
geometry and boundary conditions for this test case are illustrated in Figure 5. Tang et aI.I7 

have developed a general analytical solution for this problem, where the solute is a 
radioactive tracer. Analytical solutions were obtained for the following choice of physical 

Y 

1 

MASS FLUX 

NO FLOW OR 
-MASS FLUX 

POROUS MEDIUM 

CONSTANT 

-.) - 
APERTURE ONE-HALF + I-lom- 

Figure 5. physical setting and boundary conditions for solute transport problem 
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Figure 6. Analytical and finite-element solutions for solute transport in fractured-porous medium-concentration 
profiles along the fracture 
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Figure 7. Analytical and finite-element solutions for solute transport in fractured-porous medium-concentration 
profiles through the porous matrix 
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parameters: (1) fracture properties are D, = 5.95 X lop4 cm2/s, q = 1.17 x cm/s, 4 2  = 
5 x cm; and (2) porous matrix properties are D, = 1.6 x cm2/s, 4 = 0.01. The 
solute is assumed to have a half-life of 12.35 yr and to be non-sorbing. 

To obtain finite-element solutions for this problem, a rectangular mesh was used to 
represent the domain, which consists of 70 quadrilateral elements and 14 line elements. The 
line elements were embedded along the bottom boundary of the network. The transient 
solution was calculated using variable time steps ranging from 20 to 1OOOd. The finite- 
element solutions are compared with the analytical solutions in Figures 6 and 7. These 
graphic comparisons indicate very good agreement between results. 

CONCLUSIONS 

A new approach to the problem of modelling fluid flow in fractured-porous media has been 
developed and demonstrated, and is based on the use of a two-dimensional finite-element 
technique and the principle of superposition. This new approach can easily be incorporated 
into existing finite-element models for porous media flow to extend their capabilities: (1) to 
accommodate simultaneous flow in porous strata and fracture systems and (2) to model 
groundwater flow in strata-form geologies where large contrasts in layer thickness exist. The 
approach can also be extended to three-dimensional fluid flow problems by introducing 
two-dimensional plate elements to represent discrete hydrologic features. Moreover, the 
approach is also applicable to the problem of modelling solute transport in fractured-porous 
media. 

The work summarized in this paper was conducted for the Basalt Waste Isolation Project, 
Rockwell Hanford Operations, under contract to the U.S. Department of Energy. 
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